International Journal of Pharmacology and Clinical Research 2025; 7(2): 435-440

International Journal of Pharmacology and Clinical Research

ISSN Print: 2664-7613 ISSN Online: 2664-7621 Impact Factor: (RJIF) 8.29 IJPCR 2025; 7(2): 435-440 www.pharmacologyjournal.in Received: 12-09-2025 Accepted: 09-10-2025

Dr. S Sayeeda Begum

(MS), Assistant Professor, Department of Obstetrics and Gynaecology, Government Unani Medical College, Chennai, Tamil Nadu, India

Dr. Mubashira

MD, H.O.D, Professor, Department of PG Moalajath, Government Unani Medical College, Chennai, Tamil Nadu, India

Dr. Md. Zubyr Sherif

MD, Assistant Professor, Department of Social and Preventive Medicine Government Unani Medical College, Chennai, Tamil Nadu, India Gule Dhawa in Focus: A timeless remedy through the lens of unani wisdom

S Sayeeda Begum, Mubashira and Md. Zubyr Sherif

DOI: https://www.doi.org/10.33545/26647613.2025.v7.i2f.139

Abstract

Plant derived medicinal herbs have a significant place both in traditional and modern system of healthcare. Among the various plant species utilized by tribal people as folk medicine, (Gule dhawa) Woodfordia fruticosa kurz has been prescribed for the treatment of multiple ailments across various systems of treatment practices. Among all the other parts of this medicinal plant its flowers are majorly considered to possess great therapeutic activity. Hence, the plant is considered to be of considerable economic value. Plenty of phytochemical compounds has been identified from the flower of (Gule dhawa) Woodfordia fruticosa Kurz. The various phytochemicals isolated from this plant are tannins, flavonoids, anthra-quinone, glycosides and polyphenols. These bioactive compounds possess several pharmacological properties, such as antimicrobial activity, hepato-protective, cardio-protective, antioxidant, immune-modulatory, antifertility and anti-tumour. These pharmacological activities of Woodfordia fruticosa plant are mentioned in the classical texts of Unani system of medicine and other traditional systems of medicine as well. The purpose of this concise review is to present a comprehensive account of Woodfordia fruticosa (Gule Dhawa), highlighting its phytochemical profile, traditional folk applications, contemporary therapeutic uses, and documented biological activities. In addition, insights from classical Unani literature are integrated, where the plant holds an esteemed position as a potent medicinal agent prescribed for various gynecological, gastrointestinal, and systemic

Keywords: Woodfordia fruticosa, Gule Dhawa, gynaecological, phytochemical profile, unani wisdom

Introduction

Since early ages, medicinal plants have been regarded as a vital source of therapeutic agents, contributing significantly to the prevention and management of human ailments. Across civilizations, their value has been deeply acknowledged, forming the basis of diverse traditional medical systems while concurrently offering leads for modern drug discovery. India, enriched with exceptional floral biodiversity, possesses an immense storehouse of medicinal plants that continues to play a vital role in healthcare, both in classical traditions such as Ayurveda and Unani and in contemporary biomedical research.

Countries with ancient civilizations such as China, India, South America, Egypt, etc. and a number of plant-derived extracts are used against diseases in various systems of medicine. The demand for plant based medicines has been on the rise in the areas of marketing healthcare products, pharmaceuticals industries, agro industries, phytonutrients, neutraceuticals, food supplement and cosmetics etc., Sharma A *et al*, 2008 ^[1]. The use of medicinal plants in the treatment of diseases dates back to the very onset of human civilization and the earliest emergence of illnesses.

In India use of medicinal plants has a cultural and traditional background, and the World Health Organization (WHO) has consistently highlighted the growing global interest in plant-based remedies for treating different health conditions. One such valuable plant is woodfordia Kurz (also known as woodfordia cordifolia Salisb.), which has been an important part of traditional medicine practices across South East Asia for centuries. While every part of this plant is known to have healing properties, the flowers are especially prized for their strong therapeutic potential. These flowers not only make the plant medically significant but also add to its economic value. Their positive health effects are primarily attributed to the presence of a wide range of bioactive compounds within them.

Corresponding Author:
Dr. S Sayeeda Begum
(MS), Assistant Professor,
Department of Obstetrics and
Gynaecology, Government
Unani Medical College,
Chennai, Tamil Nadu, India

The World Health Organization (WHO) has been attempting to emphasize the use of medicinal plants and their products in the treatment of various ailments. Amongst the numerous species used in conventional system of medicine, *Woodfordia fruticosa Kurz syn*, *Woodfordia floribunda Salisb*. Existed universally and used by PR actioners of traditional system medicine in different South East Asian countries since long back [2].

The therapeutic potential of *Woodfordia fruticosa* has been substantiated through extensive in vitro and in vivo studies. Recent investigations emphasize the necessity of identifying the specific bioactive constituents responsible for its pharmacological effects. Phytochemical analyses have confirmed the presence of approximately sixty-one compounds, including glycosides, terpenes, flavonoids, tannins, sterols, phenolics, and essential oils, isolated from different parts of the plant [3].

Woodfordia fruticosa (L.) Kurz is a medicinally important plant belonging to the family Lythraceae and is well recognized across many parts of Asia. The name Woodfordia commemorates E. James Alexander Woodford (1771-1837), a botanist and physician known for being the first to grow the species to bloom within a greenhouse environment. This genus consists of only two species: W, fructicosa which is widely distributed in Asia, and W. uniflora found only in Africa. The species name fructicosa originates from Latin word frutex meaning "a shrub" [4].

- **Temperament:** Single drugs are classified based on the temperament of the herbs.
- **Cold and Dry**: Which in medicinal systems (like Unani) refers to the plant's effect on the body. A "cold" temperament is associated with cooling, calming, and soothing actions, while a "dry" temperament indicates desiccating or drying effects ^[5].

The genus woodfordia includes the following species: $^{[3]}$ Woodfordia fructicosa (L.) $^{[1]}$

Woodfordia floribunda Salisb. Woodfordia tomentosa Bedd Woodfordia uniflora koehne: A species in the genus Woodfordia [6].

Botanical Description

Woodfordia fruticosa Kurz (Figure 1), a member of the Lythraceae family, is a perennial, leafy shrub that can grow up to about 3.5 meters in height. It bears long, spreading branches with distinctly fluted stems. The bark is smooth, fibrous, and cinnamon-brown in color, often peeling off in thin strips. The young shoots are softly covered with fine white hairs, giving them a delicate appearance. The leaves are arranged oppositely along the branches, enhancing the plant's dense, bushy look. The plant has leaves that grow opposite or slightly off from each other. Its flowers are a vivid red and appear in abundance, forming dense clusters along the branches. Each flower sits on a short stalk covered with tiny soft hairs. The calyx, which surrounds the base of the flower, is long, ridged, and speckled with fine glands. It has a small bell-shaped base and a slender, slightly curved red tube that narrows near the fruit inside. The petals are a little longer than the calyx teeth and taper into fine pointed tips. The fruits are small, thin-walled, and ellipsoid in shape. They usually split open irregularly near the base of the calyx to release the seeds. The seeds themselves are numerous, brown, smooth, shiny, and somewhat angular, with an obovate form [7]. It remains a symbol of beauty and vitality in folklore and traditional ancient tribal people. The bright red and orange flowers of Woodfordia fructicosa (Gule dhawa) are admired for their beauty, often symbolizing life and energy in local art and decoration. These flowers are sometimes used to adorn homes or sacred places during festivals.

Distribution

It is native of Asia and Africa (text supriya), throughout India, but more abundant in north India up to 1600m. It is also abundantly found in low gully of Himalaya [8].

Brief description about the medicinal plant: [4]

Botanical name	Woodfordia fructicosa linn.
kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida 3
Order	Myrtales
Family	Lythraceae 5
genus	Woodfordia
Species	Fructicosa
Vernacular names Habitat	Unani: Gule dhawa
	It grows widely across India, with natural populations found in the southern regions, the eastern Himalayan
	slopes along the Ravi river up to about 1,400 meters, the upper stretches of the Godavari, the Melghat forests,
	and parts of Rajasthan. It is also common in North India, particularly in the lower valleys of the Garhwal
	Himalaya, and is distributed across many other regions of the country.5
Parts used	Flowers and gum; fruits and leaves;
Mijaz (Temperament)	Cold2° and Dry ² °; Cold ²⁰ and Dry ²
Af'aal (Pharmacological	Flowers are holds properties like, astringent, refrigerant, haemostatic, anthelminthic, antibacterial, enhance
Actions)	wound healing, dessicative, constipating, antidysentric, febrifuge, stimulant, styptic, uterine sedative.
Therapeutic uses	Antihelmintic, Antidiarrhoel, blood purifier, Styptic used in menorrhagia, and haemorrhoids. Abzan (Sitz bath)
	in conditions like procidentia, leucorrhoea, and as an appetizer.
Muziraat(Adverse effects)	
Musleh (corrective)	Zingiber officinale or Punica granatum Juice
Badal (Substitute)	Pistacia vera
	Ellagic acid, polystachoside, myricetin-3- galactoside and pelargonidine3,5-diglucoside,cyaniding-3,5-
Phytochemical	diglucoside, octosanol,b sterol and chrysaphanol-8-o-b-dglucopyranoside. Galactoside, anthocyanins
constituents	pelargonidine-3,5-diglucoside and cyaniding 3,5-diglucoside; octacosanol, chrysophanol-8-obeta-d-
	glucopyranoside, mesoinositol, polytachoside and myricetin-3- flavone Polyphenols-ellagic acid, i.e. glycosides-

	quercetin-3 rhamnoside, naringenin-7- glucoside and kaempferol. A high proportion of ellagic acid and
	polyphenols. The flowers contain 24.1%, tannins. Dimeric hydolyzable tanninswoodfordins a, b and c, and
	trimeric tannins woodfordin d and oenothein a and b. isoschimawalin betasitosterol, hecogenin, and five
	oligomers-woodfordin e, f, g, h and i.
Pharmacological	Antibacterial, hepato-tonic, anti-cancerous, anti-proliferative, DNA inhibitory, cytotoxic, antioxidant, anti-ulcer
activities	agent, immuno modulatory effects has been clinically proven.9
Famous unani	Cafacta sailan maiyna ganishaal
formulations	Safoofe sailan, majune zanjabeel

Fig 1: Gule Dhawa (Woodfordia fructicosa Linn.)

Fig 2: Dried flowers (Woodfordia fructicosa L.)

Traditional and Ethnomedicinal uses

The flowers are traditionally and ethnomedicinally recognized for their versatile therapeutic properties. They possess astringent (qabiz), stimulant (muharrik), haemostatic (habisuddumn), anthelmintic (qatil kirm shikam), desiccative (mujaffif), wound-healing (mundamile qurooh), and refrigerant (mubarrid) effects. Additionally, dried flowers are used to treat constipation (qabide aama), act as a styptic (habis), exhibit antibacterial (dafa-e-taffun)

properties, reduce fever (*dafa-e-humma*), function as a uterine sedative (*mussakine rehm*), provide further stimulation (*muharrik*), and alleviate dysentery (*dafa-e-pechis*) [10].

Therapeutic application methods

The plant offers various therapeutic applications, including oral use of its flower extract to expel intestinal worms, enhance appetite, premature ejaculation, excessive thirst, blood purification, and menorrhagia. It is combined with *jaiphal* (nutmeg) and *qhand* (jaggery) for gastric issues like bloating and pain, and with honey for diarrhoea in pediatric age group. *Gule Dhawa* extract is used for haemorrhoids, while its ashes aid in wound healing and burns. It also addresses diarrhoea, menorrhagia, haemorrhoids, rectal prolapse, and leucorrhoea through oral administration or sitz baths with its decoction [11-14].

Phyto chemical profile

Contains a variety of bioactive compounds including

The flower extracts have been reported to exhibit notable abortifacient activity in experimental mice. Phytochemical analyses indicate the presence of ellagic acid, β-sitosterol polystacoside, octacosanol, myricetin-3-galactoside, cyanidin-3,5-diglucoside, and chrysophanol-8-O-β-D-glucopyranoside. In addition, the flowers are also enriched with tannins/phenolic compounds, steroids/terpenoids, carbohydrates, resins, and essential mineral elements such as iron, aluminum, calcium, magnesium, and potassium [9].

Pharmacological properties

The *Woodfordia fruticosa* plant has been extensively studied for its pharmacological potential, demonstrating a wide range of therapeutic activities. Various extracts from different plant parts exhibit anti-microbial, anti-tumor, anti-inflammatory, analgesic, anti-hyperglycemic, immunomodulatory, cardio-protective, hepato-protective, anti-oxidant, anti-ulcer, antifertility, anti-hyperlipidemic, and antihelmintic properties ^[9].

Antimicrobial activity

The dried plant extract was reconstituted in suitable solvents at a ratio of 1:10 (w/v) and tested for antibacterial activity against fourteen human pathogenic strains, including Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella paratyphi A, Salmonella typhi, Salmonella typhimurium, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Streptococcus faecalis, along with clinical isolates of Citrobacter sp., Salmonella paratyphi B, and Shigella boydii [15]

Among the five solvent systems evaluated, the petroleum ether extract showed the strongest antibacterial activity, in some cases even surpassing the effect of gentamicin. According to a study by Bains *et al.*, the extract exhibited the largest zones of inhibition against *S. aureus*, followed by *Salmonella typhimurium*, *Klebsiella pneumoniae*, and *Pseudomonas aeruginosa*, with inhibition zones ranging from 24 ± 0.7 mm to 30 ± 0.05 mm. The heightened sensitivity of *S. aureus* is likely due to its Gram-positive nature, characterized by a thick, hydrophobic cell wall. This structural feature allows proteins, lipids, peptidoglycans, and other bioactive components of the extract to effectively penetrate and disrupt the bacterial cell membrane [16, 17].

Anti-bacterial

The antibacterial potential of *Woodfordia fruticosa* was evaluated using dry plant extracts dissolved in different solvents (1:10 w/v). The extracts were tested against fourteen human pathogenic bacteria, including *Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella paratyphi A, Salmonella typhi, Salmonella typhimurium, Shigella*

flexneri, Shigella sonnei, Staphylococcus aureus, and Streptococcus faecalis, along with isolates of Citrobacter sp., Salmonella paratyphi B, and Shigella boydii. Among the five solvents tested, petroleum ether extract demonstrated significant antibacterial activity comparable to gentamicin [17]

Immunomodulatory Activity

Experiments with yeast strains isolated from commercial Nimba arishtas confirmed traditional findings that adding Woodfordia significantly boosts alcohol production. Moreover, when Woodfordia flowers were tested in petri dishes, they noticeably increased the ability to inhibit human complement activity and reduced the chemiluminescence generated by zymosan stimulated polymorphonuclear leukocytes. Further investigations showed that this enhanced biological effect wasn't due to any microbial contamination but was caused by immuneactive compounds released directly from the flowers of Woodfordia [18].

Hepatoprotective Activity

Among the four extracts tested, the aqueous extract (WF4) showed the strongest protective effect on the liver. In cases of liver injury caused by carbon tetrachloride, WF4 significantly restored normal levels of serum enzymes (transaminases, alkaline phosphatase), bilirubin, and triglycerides. It also improved the function of the endoplasmic reticulum, as seen from the recovery of microsomal enzyme activities (aniline hydroxylase and amidopyrine-N-demethylase). The extract's ability to reduce lipid peroxidation and replenish glutathione levels highlights its antioxidant potential. Furthermore, the improvement in bromosulphalein clearance and the stimulation of bile secretion indicated enhanced excretory and secretory functions of liver cells. Microscopic examination of liver tissue confirmed that WF4 reversed much of the damage caused by the toxin [19].

Cardioprotective Activity

The formulation named as "Arjunaristha" an ayurvedic preparation was found to be beneficial for cardiac disorders. It was prepared using flowers of *Woodfordia fruticosa* by the process of fermentation [20].

Antioxidant Activity

The antioxidant activity of *Woodfordia fruticosa* was demonstrated in the flowers by using ABT and DPPH free radical scavenging models. The plant also showed significant antioxidant activity in petroleum ether, chloroform and methanol extracts ^[21].

Antiulcer Activity

Significant antiulcer activity in the stomach of female Wister albino rats was reported. The antiulcer activity was exhibited against diclofenac sodium-induced female Wister albino rats using chloroform and methanol extract of roots of *Woodfordia fruticosa* [22].

Antifertility Activity

The alcoholic extract of the plant showed significant abortifacient effects in female albino rats. Noticeable Antifertility activity from various extract of dried flowers of *Woodfordia fruticosa* was spotted in white female rats ^[23].

Antitumour activity

Anti-tumor Activity was observed in dried flower extract of *Woodfordia fruticosa* plant. The results revealed that macro ring hydrolysable tannin dimer was found to possess anti-tumor activity [24].

Analgesic Activity

The analgesic activity of *Dhawa* plant was perceived from bark of the plant tested in albino rats. Various types of *Woodfordia fructicosa* extracts, prepared using different solvents, were administered by orally to the rats at a dose of 200mg/kg according to their body weight. The standard group was administered with Analgin (non-steroidal anti-inflammatory drugs). The aqueous and alcoholic extracts were found to exhibit analgesic activity in albino rats. It was also found out that the aqueous extract possessed most durable analgesic effects when compared other solvents like alcoholic extracts [25].

Antihyperlipidemic activity

The antihyperlipidemic activity of Woodfordia fruticosa has been demonstrated in scientific studies where methanolic extracts of its flowers were tested on mice fed a high cholesterol diet. The extract significantly reduced levels of total cholesterol, low-density lipoprotein (LDL), very lowdensity lipoprotein (VLDL), and triglycerides. Additionally, it improved the ratio of total cholesterol to high-density lipoprotein (HDL), suggesting a beneficial effect on heart health by promoting better cholesterol metabolism and transport. These lipid-lowering effects are thought to be due to the presence of phytochemicals such as glycosides, flavonoids, alkaloids, tannins, and saponins, which may act synergistically to control lipid levels and support cardiovascular protection. This positions Woodfordia fruticosa as a promising natural agent for the prevention and management of hyperlipidemia and related cardiovascular diseases [26].

Anti-inflammatory Activity

The result showed significant anti-inflammatory activity in the male rats methanol extract of *Woodfordia fruticosa* flowers against the carrageenan, histamine, dextran, serotonin and formaldehyde-induced rats reported antiinflammatory activity of [27].

Antihyperglycemic Activity

antiglycemic (antihyperglycemic) Woodfordia fruticosa (Kurz) has been scientifically studied, particularly focusing on its flower extracts. Research shows that both ethanolic and aqueous extracts of Woodfordia fruticosa flowers demonstrate significant antidiabetic effects in streptozotocin-induced diabetic rat models. These extracts reduce blood glucose levels, improve insulin secretion, and normalize lipid profiles in treated diabetic rats. The flower extracts also enhance antioxidant enzyme activities, such as catalase, superoxide dismutase, and glutathione peroxidase, while reducing lipid peroxidation. This antioxidant effect contributes to the overall reduction of hyperglycemia and oxidative stress in diabetic conditions. Phytochemical analyses reveal the presence of bioactive compounds like flavonoids, tannins, steroids, and glycosides in the extracts, which likely contribute synergistically to the antiglycemic effects. The extracts have shown efficacy comparable to the standard antidiabetic drug glibenclamide in experimental

settings. These findings scientifically validate the traditional use of *Woodfordia fruticosa* flowers in managing diabetes by regulating glucose homeostasis and improving pancreatic beta-cell function ^[28].

Discussion

Woodfordia fruticosa (Gule Dhawa) has been widely recognized for its diverse therapeutic properties across traditional medicine systems, particularly within Unani practices. The findings from this review underscore the considerable pharmacological potential of this plant, which has been validated by numerous preclinical studies. Below, we discuss the implications of these findings and the need for future research.

Ecological and environmental importance

- Serves as a good nectar for pollinators.
- Plays a good role in agroforestry systems.
- Known for its adaptability to diverse climates and soil types.

Potential applications

- Pharmaceuticals: Development of drugs for gastrointestinal, inflammatory, and microbial conditions.
- **Cosmetics:** Potential use in skin care formulations due to its antioxidant and antimicrobial properties
- Agriculture: Use in bio fertilizers or as a natural pesticide.

Research gaps and future directions

- Sustainable cultivation and conservative stratergies.
- Exploration of its use in modern medicine and nutraceuticals.
- Need for extensive clinical trials to validate traditional claims

Conclusion

Numerous studies have been done on this plant to explore and establish its medicinal and pharmacological potential. Scientific validation on Larger-scale trials are still required to demonstrate the clinical efficacy of this plant in areas of focus like skin, immunomodulatory aspects and metabolic syndrome. *Gule dhawa (Woodfordia fructicosa)* is more than just a medicinal plant; it serves as a bridge between health, spirituality, tradition and community.

The authors affirm that there are no conflicts of interest associated with the publication of this research. The data presented in this review are based on publicly available scientific literature, and no financial or personal relationships with organizations or individuals that could influence the outcomes of the study were disclosed. The authors would like to express their sincere thanks to all the investigators and scholars worked hard for the development of this review. We also thank the institutions and organizations that have supported the research efforts in studying Woodfordia fruticosa. Special thanks are extended to the research and academic community for their ongoing efforts in understanding the pharmacological and ecological significance of this valuable plant. Finally, we acknowledge the contributions of our colleagues and mentors for their valuable insights and continuous support throughout this study.

Acknowledgement

The authors would like to express their heartfelt appreciation to all the investigators and scholars whose dedicated work has contributed to the expansion of this review. We also thank the institutions and organizations that have supported the research efforts in studying *Woodfordia fruticosa*. Special thanks are extended to the research and academic community for their ongoing efforts in understanding the pharmacological and ecological significance of this valuable plant. Finally, we acknowledge the contributions of our colleagues and mentors for their valuable insights and continuous support throughout this study.

References

- 1. Sharma A, Shanker C, Tyagi LK, Singh M, Rao CV. Herbal medicine for market potential in India: an overview. Acad J Plant Sci. 2008;1(2):26-36.
- Sivakumar V, Sadiq AM, Bharathi SD. Hepatoprotective activity of *Centella asiatica* Linn. against paracetamol-induced liver damage in experimental animals. Emerg Life Sci Res. 2018 Jun;4:19-26.
- 3. Graham SA. Systematic review of Woodfordia (Lythraceae). Syst Bot. 1995;20(4):482-502.
- 4. Fructicosa. A Dictionary of Botanical and Biographical Etymology [Internet]. Available from: http://www.calflora.net/botanicalnames/pageF.html. Accessed 2013 Nov 21.
- Seema R. A review on Sufoofe Sailan: A polyherbal formulation in the management of Sailan-ur-Rehm (Leucorrhoea). Int J Unani Integr Med. 2018;2(2):117-24.
- 6. Rani S, Rahman K, Sultana A, Younis PM. Accelerated stability studies of Sufoofe Sailan: A Unani formulation. 2015;36(1):83-90.
- 7. Thakur S, Kaurav H, Chaudhary G. A review on *Woodfordia fruticosa* Kurz (Dhatki): Ayurvedic, folk and modern uses. J Drug Deliv Ther. 2021;11(3):126-31.
- 8. Kirtikar KR, Basu BD. Indian Medicinal Plants with Illustrations. Vol. 7. Dehradun: Oriental Enterprises; 2003, p. 489-92, 3514-19, 1496-99.
- 9. Prajapati ND, Kumar U. Agro's Dictionary of Medicinal Plants. 2003, p. 376.
- 10. Bijlsma J, Berenbaum F, Lafeber F. Osteoarthritis: An update with relevance for clinical practice. Lancet. 2011;377:2115-2126.
 - https://doi.org/10.1016/S0140-6736(11)60243-2.
- 11. The Wealth of India. Vol. 6. New Delhi: Council of Scientific and Industrial Research; 2003, p. 383-385.
- 12. Standardization of Single Drugs of Unani Medicine. Part 2. New Delhi: Central Council of Research in Unani Medicine; 1987, p. 126-131.
- 13. Nabi MG. Makhzanul Mufradat wa Murakkabat. New Delhi: Central Council of Research in Unani Medicine; 2007. p.49, 56, 219.
- 14. Hakeem MA. Mufradat Azeezi. New Delhi: Central Council of Research in Unani Medicine, Mehar Graphics; 2009, p. 83.
- 15. Ghani N. Khazainul Advia. Vol. 1. New Delhi: Idara Kitabus Shifa; 1971, p. 701-2, 785-8, 1268, 1273-4.

- 16. National Formulary of Unani Medicine. Part 1. New Delhi: Central Council of Research in Unani Medicine; 2006, p. 67, 178, 188, 210, 229.
- 17. Bains A, Chawla P. In vitro bioactivity, antimicrobial and anti-inflammatory efficacy of modified solvent evaporation assisted Trametes versicolor extract. Biotech. 2020;10:404.
- 18. Kroes BH, Vanden Berg AJJ, Abeysekera AM, De Silva KTD, Labadie RP. Fermentation in traditional medicine: The impact of *Woodfordia fruticosa* flowers on the immunomodulatory activity and the alcohol and sugar contents of Nimba arishta. J Ethnopharmacol. 1993;40:117-25.
- 19. Dinesh Kumar. *Woodfordia fruticosa* Kurz.: A review on its botany, chemistry and biological activities. J Pharmacogn Phytochem. 2016;5(3):293-8.
- 20. Chandan BK. Hepatoprotective activity of *Woodfordia fruticosa* Kurz flowers against carbon tetrachloride-induced hepatotoxicity. J Ethnopharmacol. 2008 Sep 26;119(2):218-224.
- 21. Baravalia Y, Vaghasiya Y, Chanda S. Hepatoprotective effect of *Woodfordia fruticosa* Kurz flowers on diclofenac sodium-induced liver toxicity in rats. Asian Pac J Trop Med. 2011 May 1;4(5):342-6.
- 22. Lal UR, Tripathi SM, Jachak SM, Bhutani KK, Singh IP. HPLC analysis and standardization of Arjunarishtaan Ayurvedic cardioprotective formulation. Sci Pharm. 2009 Sep;77(3):605-16.
- 23. Finose A, Devaki K. Phytochemical and chromatographic studies in the flowers of *Woodfordia fruticosa* (L.) Kurz. Asian J Plant Sci Res. 2011;1(3):81-5.
- 24. Mihira V, Ramana KV, Ramakrishna S, Rambabu P. Evaluation of anti-ulcer activity of *Woodfordia fruticosa* roots. Pharmanest. 2011;2(2-3):158-60.
- 25. Khera N, Bhatia A. Antihyperlipidemic activity in high cholesterol diet-fed mice. Int J Pharm Pharmacol Res. 2012;2(3):211-215.
- 26. Yoshida T, Chou T, Haba K, Okama Y, Shingu T, Miyamoto K, *et al. Macrocyclic ellagitannin* dimers and related dimers and their anti-tumor activity. Chem Pharm Bull. 1989;37:3174-3176.
- 27. Ghouse MS, Danish AM. Antihyperglycemic effect of *Woodfordia fruticosa* (Linn) Kurz in STZ-induced diabetic rats. J Innov Pharm Biol Sci. 2015;2(1):96-105